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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1985, VOL. 4, NO. 2, 125-164 

Energy bands in solids: bonding, energy levels and orbitals 

by MTKLOS KERTESZ 
Department of Chemistry, Georgetown University, 

Washington, DC 20057, U.S.A. 

Qualitative aspects of semiempirical energy band calculations are surveyed with 
the purpose of highlighting the key features of the electronic structures of some 
insulators, semiconductors and metallic systems. The nodal structure of the 
electronic orbitals is stressed as the common underlying theme in such effects as: the 
Peierls distortions of metallic systems; the changing electron counts (due to charge 
transfer or different &electron counts); the high-pressure transformations of solids. 
The range of applicability of semiempirical non-self-consistent band theories is 
assessed. The discussion is illustrated by several examples. 

1.  Introduction 
Along with the growth of solid-state sciences the language of solid-state physics as 

the theoretical framework of the field is penetrating solid-state chemistry. In this review 
we shall concentrate on one particular subject: semiempirical energy band theory, 
because it appears to have a major impact on our understanding of the properties and 
stabilities of complex crystalline compounds as well as seeming to have further 
potentialities in the global description of electrons in solids. We have made no effort to 
be comprehensive. Rather, we would like to point out in some depth the importance of 
the nodal structure of the one-electron orbitals-largely dictated by symmetry- using 
a rather arbitrarily picked set of examples from the recent literature. Several more 
comprehensive reviews on band structure calculations are readily available, see, for 
example, Callaway (1964), Bullett (1980) and Harrison (1980). This more elementary 
account, however, can be understood merely with some knowledge of molecular orbital 
theory. In fact, this area has been a place of cross fertilization of solid state and 
molecular ideas. Some concepts known in molecular quantum chemistry for a long 
time, have been rediscovered in the solid-state band field and vice versa. An example of 
the former may be the chemical pseudopotential (CP) of Anderson (1968, 1969) and 
Bullett (1975, 1980), which have their molecular counterparts in the Hiickel(l93 1) and 
extended Hiickel theories (EHT) (Hoffmann 1963). Examples of the latter are 
abundant: for instance, several research groups have discovered for themselves that 
periodic boundary conditions (p.b.c.) enable one to reduce the size of matrices from (in 
principle) infinity down to unit cell size once reciprocal lattice vectors are used. In fact, 
the first ‘molecular orbital’-actually a crystal orbital-was written by Bloch (1928) for 
a solid, not a molecule in terms of the X,(r) atomic orbitals, as a linear combination of 
atomic orbitals, LCAO 

+ k ( r )  = 1 IJN C ~ X P  (ikR j ) X a ( r  - R j )  (1) 

Here the summation extends over the whole periodic lattice, defined by the lattice 
vectors 

j 

Ri=j la l  +j,a,+j,a, (2) 
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126 M .  Kertesz 

The k wave-vectors (vectors in reciprocal or k space) are associated with every Bloch 
function through Bloch’s theorem: 

TR$k=exp (ikR)$k (3) 
where TR is a translation operator corresponding to any lattice translation R. Bloch’s 
theorem thus defines the k vector up to multiples of 27c in the phase of exp (ikR), in fact 
modulo reciprocal lattice vectors K ,  which are defined to make the scalar product 
Kia, = 27cdif. Bloch theorem also gives us a conveneint way of determining k from the 
wavefunction. For example, for the following simple orbital of an infinite chain of H 
atoms (1) translation by one lattice vector changes the sign of the wavefunction, leading 

... O @ O  0 ... 

. . . -H- H-H-H -H- . . . 
1 

to - 1 =exp(ikR), thus k=n/a. In other words the wave-vector, k ,  determines the 
relative phases of the orbitals in neighbouring unit cells. 

Energy bands are the collections of permissible energy levels of a lattice, the 
eigenvalues of the corresponding Schrodinger equation: 

H@nk(r) = En(k)$nk(r) (4) 

where H is a one-electron Hamiltonian, such as Hartree-Fock, and n is the band index, 
allowing several solutions for a given k to occur. The E,(k) values as a function of k are 
the energy bands. 

In studying energy bands, substantial effort goes into establishing the symmetry 
properties (Heine 1960). Due to time-reversal symmetry: 

h(k)  = En( - k )  

K ,  = i , K ,  + i,K, + i,K, 

(5 )  

(6) 

It can be shown that the reciprocal lattice (il, i,, and i, integers) 

belongs to the same crystal system as the original direct lattice of R, vectors. For 
example, if Ri forms a face centred cubic (f.c.c.) lattice, K i  forms a body-centred 
reciprocal lattice. Due to the periodicity of the K i  lattice, as well as the way it is 
constructed, 

exp ( ikRj)  = exp [i(k + Ki)Rj]  (6 4 
for any R, and Ki. Thus k vectors differing by multiples of reciprocal lattice vectors are 
called equivalent. It is convenient and customary to restrict the study of the energy 
bands to a small region, called the Brillouin zone (BZ), which contains all the 
inequivalent k vectors closest to the origin of the reciprocal lattice, which has the full 
symmetry of the reciprocal lattice points that leave the lattice point invariant (point 
group). For example, in one-dimensional systems the BZ is the -n/a to 7c/a interval. 
The BZ of the f.c.c. lattice, 2, is shown in 3, where some special high symmetry points are 
indicated by their usual (but alas not very easy to remember) notation. A large portion 
of most reviews on energy band theory is devoted to the description of the 
Hamiltonians employed and their properties. Certain features of the calculations 
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Energy bands in solids 

a - E  01 1 ." a-E  p1 - 

... - 

t 

Cl 1:; c4 = o  (7) 

... 
- 

127 

remain, however, largely independent of the actual choice of the Hamiltonian. It might 
be argued that these are precisely the uninteresting results of the calculations. We have 
adopted another view forced upon us by the fact that these common features of the 
calculations can be trusted more than particular individual features of the models (such 
as features which depend, for instance, on certain basis sets or neglects of certain 
interactions and correlations). The present approach certainly has its limitations, some 
of which are discussed at the end of this paper. 

2. Boundary conditions, density of states 
The x-electron system of polyacetylene (4), in many regards identical to the simple 

hypothetical H-atom chain, illustrates well the behaviour of the energy levels as they 

H H  H H  

t : L  %c/c.\c/c.\.- \c/ \cfl \ 

I I  

I L A  A H  

a b 

4 
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128 M .  Kertesz 

Let us see what band theory, using Bloch's theorem, would give on this problem. 
According to (1) the coefficient in (7) can be written as cj=exp ( i j k ) ( l / d N ) .  The energy 
eigenvalues are (Coulson and Streitweiser 1965) 

E ~ = I x + ~ ~ ? c o s ( ~ ~ ~ c / " )  ( j =  1,2,. . . , N )  (9) 

The difference between (8) and (9) is due to the different boundary condition, because (7) 
and the open, tend to the same energy level diagram ad N+m, and it is customary to 
the case ofperiodic boundary conditions. In matrix language, this means that instead of 
(7) we deal with another Hamiltonian, which is supplemented by the matrix element 
H , , = H , ,  = p, making the Hamiltonian cyclic. The 'error' introduced by this 
boundary condition is small (of the order of l / N )  for large N .  Both models, the periodic 
and the open, tend to the same energy level diagram, as N + 00, and it is customary to 
take the more convenient periodic boundary condition. Figure 1 illustrates the energy 
level scheme for a small chain, a cyclic larger chain, a linear chain, and an infinite chain. 
The density of the levels (levels per unit energy interval) will be also given as the density 
of state diagrams. The latter curves are an alternative representation of the energy 
level structure to the energy bands. As N+m, the k wave-vectors uniformly fill the 
(- z/u, +./a) BZ, continuous energy bands are formed and summations over this zone 
may be converted into integrals: 

Similarly, for three dimension ( V  is the volume of the unit cell) 

The ljiv factor before the summation ensures that it is normalized as a 'per unit cell' 
quantity. If no is the number of electrons per unit cell, the highest occupied level, the 

E 
IPI 

0 

-IPI 

N=6 N=12 N=10 
Lin. cyc .  Lin. 

N.00 

Figure 1. n-Electron energy levels in finite and infinite polyenes. 
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Energy hands in solids I29 

Fermi level ( E F )  is defined by the occupancy sum 

where O(x) is the Heaviside function. For metallic systems E, cuts through one or more 
energy bands. 

One of the features of band calculations, which is new relative to molecular 
calculations, is the fact that the Bloch functions (1) are complex. However, due to the 
E,( - k )  = ~ , ( k )  degeneracy, one can construct the following pair of functions 

$: ( r )  = $dr) k $ - k(r)  (1 3) 

which are always real, but do not transform according to the irreducible represen- 
tations of the translation group. The real $: functions may facilitate comparison of 
solid-state orbitals with molecular orbitals. Even the $k orbitals may be real at some 
special (high symmetry) points of the BZ, where exp (ikRj) = +_ 1. For example, such is 
the case at k = 0 (termed as r point) or in general at (A ,  B, C) points where A,  Band C are 
equal to either 0, or a half reciprocal lattice vector. 

The actual numerical work involved in any one-electron (such as extended Huckel) 
band structure calculation consists of diagonalizing the k-dependent matrix equation, 
which is based on (4). If there are m orbitals within the unit cell, the m x m matrix 
equations are: 

H(k)cfI(k) = &fI(k)S(k)C,(k) (14) 

giving rise to m E,(k) energy bands where 

H(k)= xexp(ikRj)H(j), and S(k)= xexp(ikRj)S(j). 

Here H( j) and S ( j )  are the jth neighbour Hamiltonian and overlap matrices between 
unit cells separated by the translation vector Rj.  For example, for the above given 
polyene case in equation (7) 

j j 

if the unit cell is taken to consist of two orbitals (T is for matrix transposition). Larger 
unit cells are always possible leading formally to more bands and smaller BZs, but 
usually the smallest possible is chosen. Occasionally it may be convenient to discuss the 
band structure in terms of a smaller and a larger unit cell, the corresponding BZs are the 
extended and reduced zones, respectively. An example may be the case of equidistant 
polyacetylene, which has one half-filled band, but in discussing its distortion into the 
alternating structure (4) for a comparison it may be convenient to use a reduced zone 
corresponding to the two orbital per unit cell case. Then, of course, it has formally one 
filled and one empty band. Other examples for extended zone schemes are given later in 
this paper. 

The knowledge of the energy levels (bands) is the basis for the total energy 
calculation: 

Etot= CCe(&n(k)--EF)&,(k)+AE (15) 

where AE is the sum of Coulomb, exchange and nuclear-nuclear interactions, neglected 
in the extended Huckel model. In spite of recent justifications for such an approach (see, 
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130 M .  Kertesz 

for example, Skriver 1982) caution is in order to keep in mind the limitations of this 
simple model (see also Q 7). In determining the Fermi energy, the DOS curve is usually 
constructed, which also helps in assessing the important energy regions. Utilization of 
wavefunction information poses a problem, familiar to practitioners of molecular 
orbital calculations of large molecules: there are often too many coefficients (in this case 
also k dependent) to deal with. One way out of this is to concentrate on small regions of 
the BZ (high symmetry points) which may be important, e.g. due to the closeness of E ,  
and then concentrate on those orbitals. Alternatively, orbital population contributions 
from different portions of the BZ may be used to characterize the bonding-antibonding 
nature of the energy levels. This is done effectively by the energy dependent crystal 
orbital overlap populations (COOP). These are weighted DOS curves: for the levels in a 
given energy range the total DOS in that range is weighted by the contribution to the 
overlap population made by the crystal orbitals in that range (Hughbanks and 
Hoffman 1983). These curves are negative where the net contribution is antibonding, or 
positive where the net contribution is bonding in an infinitesimal energy range for a 
given pair of atoms. Other types of projected density of states curves (PDOS) may 
display the energy-dependent contribution of a certain type of atomic or orbital 
population. 

An especially useful aspect of these curves is that they enable us to quickly assess the 
nature of the interactions (bonding or antibonding) between pairs of atoms as a 
function of electron count. 

3. n-Electron systems 
3.1. Electronic structure of polyacetylene 

Let us now turn to a simple one-dimensional example: polyacetylene. This system is 
a prototype conducting polymer, the subject of intensive experimental investigations 
(Chiang et al. 1979). Owing to its simplicity, it has been a favourite of theoreticians (see, 
for example, Salem 1963) and it may serve here as a useful model compound to illustrate 
the effect of lattice distortions on the total energy and the energy gap, as well as the 
influence of charge transfer on the geometry of the system. We will now show how the 
nodal structure of the wavefunction at  the Fermi energy plays a profound role in 
determining these properties. 

We start by looking at the following simple crystal orbitals for the n electrons of an 
equidistant all-trans-polyacetylene (5, 6, 7). Using equation (3) it is evident that the 
corresponding k values are O,n/2a and 0, respectively. The energy values corresponding 
to these wavefunctions are smallest for 5 (all interactions bonding), intermediate for 6 
(bonding and antibonding neighbours in equal proportions) and 7 is the most 
antibonding orbital with the highest energy. Thus, the following band structure is 
obtained (see figure 2). The degeneracy of 6a and 6b is because of the equivalence of the 
bonds within and outside the unit cell. Once these bonds become inequivalent, as 
shown in 4, the intracell bonds become shorter and the intercell ones longer-this has a 
stabilizing effect on 6a, and a destabilizing on 6b. As a consequence a forbidden energy 

5 6a 6b 7 
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Energy bands in solids 131 

Figure 2. Energy bands ofequidistant (-) and alternating(--- 
the energy gap is also illustrated on the density of states curves (b, c). 

-) polyene (a). The opening of 

gap, E,, develops as indicated in figure 2(b). This driving force leading from a 
symmetrical structure to a less symmetrical one has its counterpart in the molecular 
Jahn-Teller distortion. The main difference is that in the present case not only 
individual levels are moved by the distortion (in an overall stabilizing manner) but a 
whole fraction of the energy band is tied to the perturbation of the nuclear framework. 
As a consequence a new pair of singularities occur in the density of states curve for the 
distorted structure (figure 2 (c)). The actual wieght carried by this singularity is so large 
that no elastic force can resist the tendency towards the distortion. Peierls (1955) 
discovered that any hypothetical one-dimensional metal is susceptible to a metal- 
insulator lattice distortion and this class of distortions bear his name today. 
Consequently, when one calculates the total energy as function of the alternation 
parameter, Ar = rc.- r c Z c  (keeping their sum constant), the minimum corresponds to 
Ar # 0. The fact that predictions of this sort are valid for a variety of systems makes the 
study of the nodal structure of the Bloch functions at and around the Fermi level 
especially important. Moreover, the effect of charge transfer on the geometrical 
parameters can be predicted as well. 

Figure 3 shows the change of total energy within the EHT model as a function of Ar 
for a neutral (uncharged) trans-polyacetylene chain, as well as for chains with q added 
charge per cell unit. For q = 0 we find that the most stable structure corresponds to non- 
zero alternation (ArZO). The other curves provide us with models for the doped 
polymer. Positive or negative q means that electrons have been transferred to acceptors 
or from donors, respectively. In this model the donor or acceptor molecules are 
structureless, their sole role is to act as sources of charge transfer, CT. Thus, the model is 
a rigid band model, we have the same energy band structure for every value of q, the CT 
parameter, but the occupancy varies with it. The effect on the variation of the calculated 
Etot(Ar) curve is small, as long as 141 << 1. But as 141 grows, the optimal alternation Aropt 
shifts to smaller values, and at a crtical CT value the alternation vanishes: the 
equidistant configuration is preferred. This comes as no surprise: at q= + 1 no n 
electrons are on the chain so there is no driving force for the alternation. At the other 
extreme, q = - 1, every bonding and antibonding n state would be occupied and again 
all bonds must be equivalent. 

The crossover from alternating to equidistant chain occurs at around 141 =0.1 
because only the states in the vicinity of k = nja are active in the Peierls distortion. If 
these are vacated (q  < 0) or doubly occupied (q  > 0) the driving force diminishes. This 
argument (Kertesz et al. 1981) points out the importance of the nodal structure of the 
one-electron wavefunctions over a small region in k space. 
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132 M .  Kertesz 

trans- (CHIx 

q=-0.2 , q-0.3 

A r  $1 0 0.1 0.2 

Figure 3.  The total energy as function of bond length alternation Ar=r,-c-rC,C in 
trans-(CH),. (after Kertesz et al. 1981). 

These predictions for the q = O  case have been confirmed by powder X-ray 
experiments (Fincher et al. 1982, Lando and Thakur 1984). Evidence for a bond length 
equalization upon charge transfer is indirect owing to the lack of single crystal samples 
of doped and undoped polyacetylene. 

The general features of the above EHT model calculations are in accordance with 
other more refined calculations on the undoped and doped models of polyacetylene 
(see, for example, Kertesz 1982). 

3.2. An analogy between the n-electron systems of doped polyacetylene and graphite 
Both insulating polyacetylene and semimetallic graphite become good electrical 

conductors upon doping with a variety of donors and acceptors through the formation 
of intercalation compounds. Although the formation of these compounds is a complex 
process, its main general feature is that it is accompanied by a charge transfer from or to 
the carbon n-electron system. One would expect a general n-bond weakening for both 
signs of the CT, because for q < 0 (donor compounds) electrons are put to unfilled, 
usually antibonding levels, while for q > 0 (acceptor compounds) electrons are taken 
out from bonding ones. The characteristic feature of many solids, like graphite or 
equidistant polyacetylene, is that the orbitals around E ,  are basically non-bonding, at  
least in the first-neighbour sense. This is apparent for the latter from the form of orbitals 
6 showing that bonding and antibonding neighbours alternate throughout the chain. 
However, every second-neighbour interaction is antibonding. As a consequence, this 
orbital has several features of weakly antibonding orbitals: for q < 0 (more electrons on 
the chain) bond weakening, for q > 0 bond strengthening is expected. Indeed, this 
assymmetry is observed in the calculations, as illustrated in figure 4, which shows the 
optimized C-C distances as a function of q. 

A similar asymmetric effect for the two signs of the CT has been observed 
experimentally for graphite compounds (Pietronero and Strassler 1981, Baron et al. 
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Energy bands in solids 133 

Figure 4. Change of the optimized C-C distance (AR = R,,,(q) - R,,,(O) as a function of charge 
transfer, q, in a model of polyacetylene (after Kertesz et al. 1981). 

1982). We have recently related this asymmetry to that described above for (CH), 
(Kertesz et al. 1983, Kertesz 1985). 

For this purpose a word or two about the band structure of a graphite layer is in 
order. The rough results of an extended Huckel calculation are given in figure 5. (The 
inset shows the BZ.) Of special significance is the K point, at which the highest occupied 
and lowest empty n bands touch, accounting for the semimetallic behaviour of graphite 
(Wallace 1947). As often happens in EHT calculations the highest occupied a bands 
come out too high. Within the rigid band model electrons are titrated into or from the TC 
orbitals around K .  For q>O, the a orbitals at r are soon reached and both a and n 
electrons are donated to the acceptors. Neglecting these c orbitals for a moment, the 
overall pattern of the TC orbitals is only pertinent. This is illustrated in figure 6. 

The difficulty in a visual representation for these interactions comes from the fact 
that the Bloch phases are complex. Let us analyse their effect on the total energy. The 
first-neighbour interactions contribute the terms 

2 1  (1st neighbours)Ck,CkaHap =O 

summing up to zero. However, the second-neighbour interactions result in the energy 
term 

2 C (2nd neighbours)Ck,aCk,pH,a = 12p" cos 27113 > 0, 

giving rise to a positive term in the total energy, characteristic of an antibonding 
orbital. Even though p" is small, the number of second neighbours is 6 and the resultant 
effect is not negligible. Figure 7 shows the calculated optimized C-C distance as a 
function of the CT parameter q, the reference point being the optimized Y,--,- value for 
the case without any CT. Two curves are given, one for n-only CT and another for both 
n or a CT. 

The assymmetry of the .n-only curve is a consequence of the antibonding nature of 
the n orbitals around E,. In the full (a + TC) calculations, the high lying occupied a levels 
also carry some antibonding character leading to a further weakening of the C-C 
bonds when they are emptied. Of course, for large values of q the orbitals emptied 
eventually become predominantly bonding and the curve turns around. 
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134 M .  Kertesz 

M 

K 

R = 1.51 R=1.40 

Figure 5. Energy bands of a graphite layer from extended Hiickel calculations. (The two band 
structures correspond to the experimental ( R  = 1.40 A) and the optimized ( R  = 1.51 A) C-C 
distances, respectively.) The inset shows the BZ of the hexagonal two-dimensional lattice. 

Figure 6. Phase factors in a graphite lattice. /I” is the second-neighbour resonance integral. 
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Energy bands in solids 135 

MC,, M:donor 

%, 

Ca 

\ 
q= l/x I I 

-0.15 -0.10 -0.05 
G-AsF 

Acceptor Compounds 
LR (A) 

0.02 

0.01 

Kc,, 

KC48 

Kc,, G-NiCI,,,, 
I 

I ’ * q  %,/0.05 0.10 0.15 [le,l -. k-,,-- 

\ 
\ 
\ 

0.01 
\ 
\ 
\ 
\ 
\ 

0.02 

Figure 7. Optimized C-C bond distances in a layer of graphite as a function of charge transfer 
[ A R  = R,,,(q) - RO,,,(0)]. Experimental data indicated are from Pietronero and Strassler 
(1981) and Baron et al. (1982). For q > O  two curves are given: - -corresponds to n-only 
charge transfer, while --- corresponds to n and cr charge transfer. 

These results are not only qualitatively, but also-surprisingly enough- 
quantitatively in accordance with experimental results (Pietronero and Strassler 198 1). 
At this point it is in order to comment on the meaning of the CT parameter, q. While in 
our calculations it has a clear-cut definition, this is not the case for the experiments. We 
might-as done in figure 7 for the experimental data-use l /x  as a (maximal) measure 
of q (x occurs in the chemical composition formula MC, for the first stage intercalation 
compounds of graphite if M is monovalent). The actual CT will be less. We do not wish 
to imply that our curves may be used for determining the degree of partial CT in these 
compounds. The qualitative trends are reasonable enough to substantiate the 
conclusion that the nodal structure of the wavefunction for graphite has directly 
measurable consequences in the systematic changes of C-C bonding in its CT  
compounds. 
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136 M .  Kertesz 

3.3. Transition from polyacetylene to graphite 
While polyacetylene has a Peierls-distorted ground state, the structural essence of 

graphite, the two-dimensional sp2 carbon layer, has equivalent C-C bonds. It is 
legitimate to ask how a series of systems of intermediate complexity would behave with 
respect to bond alteration, i.e. how the passage from (CH), to a graphite layer is 
accomplished. One member of such a series, polyacene (8) has recently been studied by 
Kivelson and Chapman (1983) and Yamabe et al. (1982), who concluded that polyacene 
should have a metallic band structure and that it should not undergo a Peierls 
distortion. This is in contrast with a previous calculation (Whangbo et al. 1979) where 
the band structure of the alternating system (11) has an energy band gap and is more 
stable than the regular structure 8. 

We have examined the n-electron band structure of polyacene, and two further 
members of the series (9,lO) as well as their tendency to distort (Kertesz and Hoffmann 

1983). We concluded that the distorted structures with lower symmetry (11,13) have 
energy gap openings which decrease sharply with the number of coupled polyacenic 
chains (n) according to a power law E ,  = C,(6//3,)”, where lS/&l<< 1. Consequently, the 
associated energy gains due to distortion also sharply decrease. Figure 8 reproduces the 
essential part of the band structure for polyacene. 

12 

13 

The present discussion is based on lattice sums restricted to second neighbours 
only, because in the particular systems studied here this restriction enables us to fully 
decouple the n orbitals of the outermost (edge) carbon atoms from the rest of the 
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Energy bands in  solids 137 

orbitals at k=n/a, as can be seen in 14 for polyacene. This idealization in the 
summation increases the symmetry of the system. In particular, the decoupling is a 
consequence of the transverse mirror planes also shown in 14. This trick of increased 
symmetry permits a consistent interpretation of the previously published band 
structures. Due to the decoupling described above, $s and $A become degenerate at  
k = nja (figure 8 (a)). Third- (and higher) neighbour interactions lift this degeneracy, 
by stabilizing $s and destabilizing leading to the crossing in the converged 
calculation of Whangbo et a/. (1979) (figure 8(b)). 

The effect of the distortion from the regular (8) to the alternating structure (11) is to 
introduce a mixing of $s and dS as well as and dA. This is because the transverse 
mirror planes vanish the moment the slightest distortion takes place (Boon 1971). 
However, the C, axes, indicated by a cross on (ll), still remain a valid symmetry 
operation. They prohibit the mixing of the A and S states. This new mixing at k = n/a, 
absent for the regular structure, stabilizes the highest occupied band states 

* " = * A + C d A  (16) 

* c  = *s - Cds (17) 

and destabilizes the lowest empty band states 

leading to a forbidden energy gap, E ,  as in figure 8 (c). Suppose, that the alternation 
perturbs the resonance integrals by k6. The eigenvalue problem can be solved 
analytically, giving an energy gap of 

E~=2'=Bo+J(B~+462)-262/1P,l (18) 

a b C 

k 
Figure 8. z-Energy bands of polyacene. (a) A first-neighbour model calculation, (b) a fully 

converged calculation, (c) calculation based on a distorted geometry (Kertesz and 
Hoffmann 1983). 
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138 M .  Kertesz 

where an expansion in terms of small S/lpol has been performed. A perturbation 
calculation yields zero correction at first order, and the same as in (18) at second order 
(in energy). In case of polyacetylene the gap opening is proportional to thejrst power of 
the distortion: ~ r =  1 )  = 46 

This is due to the direct coupling of the degenerate states at K = nja to the lattice 
deformation, as illustrated in (6a) and (6b). 

The one-dimensional polymers (9) (polynaphthene, let us call it poly-c,) and (10) 
(polypyrene, let us call it poly-C,) are further members of a series that makes an obvious 
transition to two dimensions. The symmetry adapted wavefunctions of k = rcja for poly- 
C,  are illustrated (15). The following crystal orbitals are obviously degenerate pairs: 

(19) 

(g51, 42); (43, 44); and ( d 5 ,  4,). 41 and 42 lie at the Fermi level. The deformation from 
the regular to the distorted (12) structure introduces a coupling between the edge atoms 
of 41 and 42, giving rise to a splitting. The lack of mixing of 41 orbitals of the same 
symmetry is due to the restriction of the second-neighbour approximation model. d1 is 
decoupled from 44 and 6, because of this, while it does not interact with 42, 43 and 45 
due to the vertical mirror planes and the changes of signs that arise as a consequence 
of being at k = rcja. The distortion switches on some coupling. The new symmetry 
adapted wavefunctions will be the $ i - s :  J2$, , ,=4,  542, &?$3,4=$3f44  and 
J21,h,,, = 45 f 4 6 .  These are still degenerate for the undistorted system. In the distorted 
system interacts with $3 and $ 5 ,  leading to a stabilization of it by EJ2,  while t,hz rises 
by the same amount due to mixing with $4 and $,. The Hamiltonian for the distorted 
system at k = 7cja in terms of atomic orbital coefficients is - 

H =  

A perturbation calculation for small 6 yields 

$;=$1+a$3+b$,, with a=-b=-6/Po,/2 (21) 

therefore, even at second order in energy a cancellation occurs. The first non-zero term 
for E r = 3 )  is third order in energy: 

EF=3)=463/pZ 0 (22) 
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Energy bands in solids 139 

in a similar way for poly-C, it can be shown that 

E t = 3 ) = c ~ n ~ t  d4 (23) 

These calculations have demonstrated that the first-order (linear) Peierls gap opening is 
absent in carbon chains with two or more coupled polyenic chains, due to the idealized 
symmetry of the systems. However, a higher-order gap always occurs: 

q) = Cn@/Bo)”Bo (24) 
driving the lattice to distort. We have termed this effect as the higher-order Peierls 
instability. Actually, S/lB0l can be realistically estimated to be about 0.2 or less. 
(S/lpol =0.135 for a distortion of 0.08 A, a value close to the experimentally observed 
distortion for polyacetylene (Fincher et al. 1982).) Thus, the higher-order gaps will be 
much smaller than the linear gap of polyacetylene, which is about 1.4 eV (Fincher et al. 
1978). As a consequence even small interchain effects may actually stabilize a metallic 
state in such systems, in sharp contrast to the linear Peierls system of polyacetylene. 
This actually happens in graphite ( n - +  a), which has E, = 0 and a regular structure, and 
not a distorted one. 

The above simple considerations (Kertesz and Hoffmann 1983) qualify Peierls 
theorem on the intrinsic instability of one-dimensional metallic systems, and have a 
broader applicability. The high-order Peierls gap openings described in this section 
may occur in other systems as well, where chains susceptible to first-order Peierls 
distortion are not weakly coupled together, forming more complicated quasi-one- 
dimensional semimetallic systems (see, for example, (SN), below). 

4. Further one-dimensional examples 
Distortions similar to the one observed for polyacetylene, preventing an ideal 

structure with metallic bandstructure to occur, are quite often found in the recent quest 
for synthetic metals. Their theoretical study is partly motivated by efforts to find ways 
to stabilize the ideal, metallic structures. 

4.1. A Peierls-dimerized chain: tetramethyldistibolyl 
The crystal structure of 2,2’,5,5,’-tetramethyldistibolyl(l6) reveals the presence of 

an alternating chain of shprt and long Sb-Sb contacts. Band structure calculations 
have been performed for ‘the experimental, as well as for an idealized, equidistant 
metallic chain by Hughbanks et al. (1982). (The methyl groups have been replaced by 
hydrogens, as is usual in this trade.) Because of the interactions between the Sb atoms 
along the chain the planes of the Sb(C4H,) units are not symmetry planes. Thus, the p z  

16 
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140 M .  Kertesz 

and n, orbitals will mix, producing a degenerate pair of orbitals indicated in the r.h.s. of 
the band structure in figure 9. 

A Peierls-type dimerization distortion follows from the stabilization of the lower 
one of the pair: bonding combination of the orbitals becomes shorter, antibonding 
longer. This band structure may also serve as an illustration of the extended zone 
scheme. The elementary cell in the regular or alternating structures contains two 
Sb (C,H,) units. However, the structure of the matrices expressing the interactions 
between these units cannot tell whether it is a pure translation or a screw axis of 
rotation which connects the neighbouring unit cells (for a more complete discussion of 
screw axis in polymeric electronic structure see Blumen and Merkel(l977) and Bozovic 
and Delhalle(l984)). Therefore, the band structure can be represented using an effective 
elementary cell of only one Sb (C,H,) unit in the non-dimerized case. The correspond- 
ing energy band structure is shown in figure 10. 

This figure reveals that there are not really as many band crossings as it might 
appear from figure 9, but rather several crossings are derived from the 'backfolding' of 
the band structure of figure 10 to that of figure 9. Otherwise, the splitting of the 
degeneracy at E ,  leads to a sizeable energy gap and energy gain stabilizing the 
dimerized structure, which explains the experimentally found geometry and optical 
absorption. 

7r8 

/ 

MO's 

Figure 9. Energy bands of a tetramethyldistibolyl chain (molecular orbitals of the chemical unit 
cell are indicated on the left) (from Hughbanks et al. 1982, with permission). 
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Energy bands in solids 141 

J --- ... '\ 

r 

Figure 10. Energy bands of figure 9 in a reduced (backfolded) BZ (from Hughbanks et al. 1982, 
with permission). 

4.2. A chain with two-thirds-Jilled band: polyiodide, (Zy)x 
Two of the structures discussed above were derived as dimerized chains resulting 

from a Peierls distortion of a half-filled ideal metallic chain. Other partial fillings lead to 
larger aggregations of atoms. For example, polyiodide chains of the (I;)m or (I;)m type 
can be derived (Kertesz and Vonderviszt 1982) as Peierls-type distortions of two-thirds- 
filled or three-fifths-filled cs bands of an ideal metallic polyiodide chain. We will show 
here the arguments for the two-thirds-filled case only. A two-thirds-filled band of x 
atomic orbitals has the following crystal orbitals at the Fermi level 

where (kF)l,2 = +27~/3a. These orbitals being complex, their nodal structures are not 
immediately as suggestive as for the half-filled band case as 6a and 6b are. The two 
orbitals, (25), are degenerate, and only one is filled in the two-thirds-filled band case. 
There is a Peierls-type driving force towards a nuclear deformation of the lattice if an 
energy band gap results from it which is linear (first order) in the distortion. This 
condition is fulfilled if the distortion has the periodicity of (2kF)-', causing a periodic 
lattice potential: 

V(r) = V, cos (2k,r) (26) 
In our case this leads to the following perturbation theoretical (PT) result 
( H  = H ,  + V(r) is the Hamiltonian modified by the nuclear distortion). Suppose that the 
two (degenerate) states are $ k F ,  and I + - ~ ~ .  Then using V(r) in degenerate PT one 
obtains a splitting of these two states by f V, and the corresponding states will be 

++ = 1 / J 2 ( $ k F * + - k F )  (27) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



142 M. Kertesz 

These new states are purely real, signalling that the new BZ edge due to perturbation 
(26) is now at 2 k,. The patterns of the iodine 5 p  orbitals for the two degenerate real 
orbitals are shown as insets in figure 11. These will be shifted downwards or upwards 
following the trimerization distortion, leading to energy stabilization favouring a 
structure with (I;) units. The band structure is illustrated in figure 11. The actual 
calculations show a more complex picture, because the 5 p  orbitals’ hydridization with 
5s is not negligible. A large number of solid-state compounds enclose polyiodide 
chains, and the experimental data on their structural and electrical properties could be 
rationalized using the orbital arguments above. 

I J 
0 0.1 0.2 0.3 0.4 0.5 

k[?1 

Figure 11. @-Energy bands of an infinite chain, with regular (-) and trimerized 
geometry (---). The insets show the nodal structure of the orbitals, which are relevant in 
the Peierls distortion (after Kertesz and Vonderviszt 1982.) 

4.3. Polysulphur nitride: a ‘chain’ with a three-quarters-jlled band which does not distort 
Polysulphur nitride has metallic properties and consists of chains packed closer 

than van der Waals interactions, as shown in figure 12 (Cohen et al. 1976). Neglecting 
these weaker interactions, the planar chain has 671 electrons per S2N, units: formally a 
three-quarters-filled 71-band case. This would be susceptible to a Peierls-type distortion 
to a lesser degree than polyacetylene for two reasons. First, the 2k,  periodicity encloses 
four atoms (two SN units) in contrast to the two CH units in polyacetylene. This means 
that the required distortion is spread out over four atoms and no simple bond length 
alternation pattern could occur, as different bond distances would change smoothly 
from bond to bond along the chain. The other, more important, factor preventing (SN), 
from a metal to insulator transition is due to its relatively strong interchain 
interactions, which cause the band structure to split as is shown in figure 13. 
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Energy bands.-in solids 143 

Figure 12. Crystal structure of polysulphur nitride, (SN), (after Cohen et al. 1976). 

EF = 
-7 

Z D  B T  z E A r z c Y r 
(SN), Band Structure 

(4 

DOS 

-8 -4 0 4 

Figure 13. (a) n-Electron bands of (SN),. (b) The calculated density of states ( E  in electron volts) 
(after Batra et al. 1977). 
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144 M .  Kertesz 

The presence of a deep DOS valley at the Fermi level is a manifestation of the three- 
dimensional interchain coupling, which gives rise to the doubling of the bands along 
FZ. (The BZ is given in the original papers.) The Fermi level is thus moved from the 
Z point (2 is the endpoint of the one-dimensional BZ, where the Peierls gap opening 
would occur) to the vicinity of the crossing points (Friesen et al. 1975). The energy levels 
near E ,  are found only in the immediate vicinity of the crossings of these bands, of 
which there are actually two. Such regions-and this part of the argument is general- 
constitute only a very small fraction of the three-dimensional BZ, thus the DOS 
becomes very low around this crossing. In contrast to this, for a one-dimensional 
system, like an (SN), single-chain model, the DOS is much larger because here it is 
proportional to the ratio of the length of a small k increment near Z to the length of the 
whole BZ, 2 4 a ,  and the length fraction is much larger than the volume fraction for the 
three-dimensional case. Consequently, the three-dimensional nature of the bands 
pushes levels away from E,. This makes the system ‘less’ metallic, but at the same time 
less susceptible to a Peierls-like distortion, which is based on the effectiveness of 
pushing levels away from the Fermi level by way of a geometrical distortion. 

The discussion above (Ching et al. 1977) explains how three-demensional couplings 
may suppress the Peierls distortion in (SN),, which indeed, has metallic properties 
(Street and Clarke 1980). Details of the published band structures vary significantly, 
but the dip of the DOS around E ,  discussed above is one of those essential general 
features invariably found in the calculations, which we emphasize in the present review. 

5. Two-dimensional examples 
5.1. Charge transfer in graphite 

Intercalated layer compounds of graphite exhibit a * wide variety of unusual 
electrical, optical and magnetic properties. The rigid band model (in which electrons or 
holes are ‘titrated’ into the unrelaxed energy bands of the host) is successful in 
accounting for some orbital controlled structural trends discussed above. However, in 
metal-graphite intercalation compounds, the interplanar host distances seem to 
correlate with the ionic radii, while the guest-guest distances correlate more with the 
metallic radii. Table 1 shows a selection of such data. 

This inconsistency implies some degree of metal-metal bonding, partly through the 
carbon 2p ,  (n) orbitals, giving rise to a partial localization of the transferred charge. 
This explains some of the discrepancies between the chemically defined CT, fchem, and 
the physically defined CT, felec, as described by Fisher (1980). Band-structure 
calculations on fully doped alkali metal graphites reflect such localization of some of 
the transferred charge (Holzwarth 1983). The hybridization of these 2p,(n) states with 

Table 1. Ionic and atomic radii, and geometrical dimensions of some selected metal-graphite 
compounds (in angstroms)?. 

LiC, CsC, BaC, SmC, YbC, 

Metallic radius 1.53 2.67 2.22 1.81 1.94 
M-M in-plane distance/2 2.13 2.46 2.46 2.13 2.13 
Ionic radius (Li+, Cs’, Ba2+, SmZ+, Yb2+) . 0.60 1.69 1.35 1.04 1.13 
Thickness of C-M-C layer 3.74 5.94 5.28 4.58 4.57 

t Data from Herold (198 1 )  and Hulliger { 1976). 
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Energy bands in solids 145 

intercalant orbitals have been used to interpret inversed photoemission data (Fauster 
et al. 1983). Hybridization of Li 2s and carbon n electrons had been found in LiC, both 
theoretically and experimentally (Wertheim et al. 1980). The proximity of the 2p,(n) 
carbon orbitals to the intercalant layers permits them to ‘back-donate’ some of the 
transferred electrons, providing the basis for unique metallic bonding between the 
guests, assisted by the presence of the delocalized host electrons. In this sense there is a 
limit as to how far the concept of charge transfer can be pushed. After all, the division of 
the charge distribution into atomic regions is as arbitrary for solids as it is for 
molecules. 

5.2. Layers of transition metal dichalcogenides 
Among the two-dimensional systems, an interesting prototype structure is that of 

the transition metal chalcogenides, MX,, X = S, Se, Te. There is one fundamental aspect 
of the structure that varies systematically through the transition series (see Wilson and 
Yoffe 1969). The two chalcogenide layers forming a slab can be stacked directly above 
each other, making trigonal prismatic holes for the metals. Alternatively, the layers may 
stagger, forming octahedral holes. The IVB metals all have octahedral structures. For 
VB metals most have octahedral, some trigonal prismatic geometries, and for VIB the 
reverse is true. In group VIIB we again find octahedral structures, albeit distorted ones. 

Band structures and total energies of the two different kinds of layers, trigonal 
prismatic versus octahedral, have been compared (Kertesz and Hoffman 1984 a) using 
a rigid band model, i.e. by using the very same band structure for different compounds 
across the Periodic Table. The study of such an average band structure is necessarily not 
accurate in its details, and for the individual compounds a number of band structures 
have been compiled which compare more favourably with experiments concerning the 
individual systems (see, for example, Mattheiss 1973). On the other hand, the rigid band 
model is, as we shall see, capable of accounting for the octahedral-trigonal prismatic- 
octahedral trend as one moves across the transition series as the d electron count 
changes. Since there are no bonding X-X contacts in these dichalcogenides we can 
assign formal oxidation state I1 to X, reaching oxidation state IV for the metals in MX,. 

In addition to the d electron count variation across the series, packing ought to be 
considered as well, but here we focus solely on the electronic aspects. A strong 
argument for an electronic rationale for the choice between structural alternatives is to 
be seen in the observation that compounds choose between one and the other structure 
while having the same ionic sizes. 

We shall first look at the band structures of the ligand systems only, free of the 
metal. We anticipate some differences due to the different packing. Both layers are 
hexagonal, with the BZ shown in figure 5. The unit cells of the two two-dimensional 
layers are shown in 17 and 18. The upper portions of these illustrate the trigonal 
prismatic and the octahedral environments, respectively. 

B 
17 18 
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146 M .  Kertesz 

The dark dot indicates the eventual position of the still absent metal, and the lines 
the M-X axes. There is a twofold symmetry element in both cases, but it is a different 
one for the two structures-a mirror plane oh for the AA double layer, an inversion 
centre ifor the AB structure. Significant for the subsequent discussion is the fact that the 
nearest interlayer X-X contact is within one unit cell for AA, 17, but between two 
different cells for AB, 18. 

Let us slowly build up the band structure of the two layers, taking Se as an example. 
Each Se enters with a 4s and three 4p levels. The choice of axes will be such that p z  will 
be perpendicular to the layer. 

At the r point we expect two s(Se 4s) bands, symmetric and antisymmetric with 
respect to oh or i .  The splitting should be slightly larger for AA. At the same r point in- 
plane 4p, and 4py levels (four altogether) will be pushed up, because of in-plane 
interactions (see 19,20). While the interaction of centre 1 with 2 (numbering given in 19) 

19 20 

and 1 with 3 is antibonding, 1-4 is only weakly bonding. The other in-plane orbital, 20, 
degenerate by symmetry with 19, is 1-4 strongly antibonding, which dominates the , 

character ofthis orbital. Then the 19-20 pair may be bonding or antibonding across the 
two layers, giving rise to a small splitting. 

The 4p, orbitals are not interacting strongly in-plane, for X-X z interactions, 21, at 
a non-bonding separation between chalcogens, are weak. But the 4p, orbitals will split 
into bonding and antibonding combinations due to interlayer interactions. The two 
(bonding and antibonding across the layers) combinations are illustrated schematically 
in 22-24. Note that the splitting is formally due to interunit-cell interactions in 22 and 
23 but intracell interactions in 24. Physically, the interaction is similar-it is expected 
to result in a substantial splitting, greater for the AA case where the overlaps are larger 
along the z direction. 

The case of the K point is quite different. Now, due to Bloch’s theorem, a phase 
factor is associated to every translation. This factor is exp (i@), and exp (- i4) (4 = 2z/3) 

21 

22 23 24 
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Energy bands in solids 147 

for one in-plane lattice vector translation, if they are chosen at 60” with respect to each 
other. As a consequence, certain degeneracies present in the AB (octahedral) system are 
lifted in the AA one, We will illustrate this for the AB octahedral hole case through the 
top view of the two combinations, 25 and 26. The numbers on the atoms are 
proportional to the atomic orbital coefficients (4p, or 4s). 

25 26 

Orbitals 25 and 26 are degenerate, as are the 2pZ(7c) orbitals of a single graphite layer 
at the K point in its BZ (Wallace 1947). This can be seen most easily by examining the 
‘bond order’ or overlap population around the lower atom in these orbitals. The 1,1 
combination in 25 contributes a ‘bond order’ of 1 to the overlap population, while the 
1, exp (i#) and 1, exp (- i#) combinations are each antibonding with ‘bond order’ - 1/2 
each. The sum is zero. The sign if each contribution changes in 26, but the total is still 
zero. 

In the AA packing the symmetry is lower, this degeneracy is absent and the splitting 
is directly related to the interplane bonding-antibonding interactions. The in-plane 4p, 
and 4p, orbitals at K are slightly bonding, and their splittings due to interlayer 
separations are small again. 

Summarizing the general features of the two chalcogen layers’ energy level scheme 
for these two high symmetry points we obtain 27 for the octahedral and 28 for the 
trigonal prismatic case. 

AB AA 

r K r K 

27 28 
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148 M .  Kertesz 

The actual computed band structure is shown in the paper by Kertesz and 
Hoffmann (1984). Several necessarily avoided crossings occur along the route from r to 
K ,  but the general trends are precisely those discussed above. 

We proceed directly to the MX, structures by filling every octahedral hole of the AB 
layer with a transition metal M, and every second trigonal prismatic hole of the AA 
layer. The specific metal chosen is Re, and X is Se. The resulting band structures are 
shown in figure 14. 

Let us look at the general features of these band structures. The p bands of either AA 
or AB layers of chalcogenides lie between - 10.5 and - 16.5 eV. The resonance with Re 
5d levels, placed at - 12*66eV, is excellent, as is the overlap between Re and its six 
neighbour Se atoms. Thus there is substantial Re-Se interaction, splitting the Re d 
block: the effective crystal field at Re is large. In the band structures of figure 14 we see 
two Se s bands at low energy, pushed down only a little from their metal-free positions. 
Above these are six bands, largely Se p ,  then three bands in the region between - 9 and 
- 13 eV which are largely Red. These are a set of three below two, and the Fermi level in 
the real dichalcogenide structures, electron counts do-d6, will be in this region. The 
composition of the various bands is derived from projections of the DOS, shown in 
figure 15. 

The stability of the layered structure becomes small for electron counts over d3, 
according to experience, and other (pyrites, marcasites) structures are observed for the 
VIIIa group dichalcogenides, for instance. Although we do not attempt to compare the 
MX, structures with these three-dimensional structures, it is worth looking at the 
crystal orbital overlap population (COOP) curves displayed in figure 16. (The trend for 
octahedral and trigonal prismatic is very similar.) Above - 11 eV there is a negative 
peak for all three types of bonds (M-M, X-X and M-X) indicating that filling much 
over this level destroys the structure, as such. Also apparent is the dominating bonding 
character of the M-X bonds up to - - 13 eV. The M-M bonds are weak, and start to 
pick up some antibonding contribution in the middle of the d bands (at around 

M K r 
(4 

d6 
-10 

d2 

do 

-15 

Figure 14. Energy bands of an octahedral (a) and a trigonal prismatic (6) transition metal 
dichalcogenide layer. 
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Octahedron I 

-'"b total 

r 
DOS 

(4 

I Trigonal Prism 

-20b 
Figure 15. Density of states for an octahedral (a) and a trigonal prismatic (b) layer (based on 

bands on figure 14). 

-14 eV). The X-X bonds' first significant antibonding contribution from below is at - - 15 eV, a rather low value, which is in the middle of the in-plane bands of the metal- 
free ligands' bands. Thus, the orbitals around the Fermi level for all do-d6 electron 
counts are antibonding for X-X. 

For a do electron count, bands 1-8 in figure 14 are filled, there is little difference in 
total energy between the trigonal prismatic and octahedral layering, even though the 
details of the bands differ. There are significant differences at r and K for the crucial 
bands 9,lO and 11. At bands 10 and 11 are shifted up in the trigonal prism relative to 
the octahedron. In the latter geometry the centre of symmetry prevents one Se p x , y  
combination (29) from interacting with a d orbital, thus keeping its energy down. In the 
trigonal prismatic environment both p x , y  combinations, 30 and 31, can interact with d 
orbitals. 

b 
29 30 31 

At K the differences can be traced to the same symmetry lowering factor that in the 
metal-free bilayer produced a substantial splitting in the trigonal prismatic arrange- 
ment. Band 9 goes down, band 11 up, relative to the octahedron. 

As we gradually fill these bands, first the trigonal prismatic geometry will become 
relatively more stable, due to the downward shift of orbital 9 at K.  This effect reaches its 
maximum around d 2,  when an opposite trend starts, and the octahedral structure will 
start to become more stable, due to the upward shift of bands 10 and 11 at r and at K .  
Figure 17 depicts the total energy differences as a function of the d electron count. 
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E (eV) 
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-20 - 

kSe’ E\ 
COOP 

Figure 16. Crystal orbital overlap population (COOP) for Re-Re (-), ReeSe (---) and Se- 
Se (. . .) bonds in an octahedral ReSe, model. Above - 1 1 eV (- d filling) all three kinds of 
bonds become strongly antibonding. 

Figure 17. Relative stability of octahedral and trigonal prismatic coordination in an MX, 
layer. Connecting lines provided to guide the eye (after Kertesz and Hoffmann 1984 a). 
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Energy bands in solids 151 

The curve reflects the trend in agreement with the experimental findings. Most 
notably this correlation is independent of the actual atomic parameters and the radius 
ratios. We have an electronic effect at hand, a consequence of the symmetry-controlled 
band structures at and K .  

Comparison of the energetics of different related solid-state structures as a function 
of electron count is a great subject of its own. Several studies of this kind have been 
reported: for example, Pettifor (1977) has interpreted the structural trends in elemental 
transition metals, Burdett and Lee (1984) have studied the structure of AB alloys and 
Burdett and Hughbanks (1984) the structural trends in early transition metal monoxide 
defect structures, just to mention a few. Burdett (1984) has recently related the general 
shapes of the energy differences of two structures as function of the electron counts to 
topological connectivities of the related lattices. It appears that, other factors being 
equal, connectivity and electron count largely determine the stability of a structure over 
alternative structures. Extended Hiickel theory provides an ideal model for such cases, 
as it most effectively simulates the constancy of the environments. Several beautiful 
examples are reviewed by Burdett (1984). 

5.3. The clustering distortion in ReSe,: a Peierls distortion? 
The actual structure of ReSe, (Alcock and Kjekshus 1965) can be viewed as a 

distorted ideal octahedral MX, layer compound. The distortion leads to formation of 
diamond-shaped Re, units chained together to form quasi-one-dimensional arrays, as 
illustrated in 32. Is this a consequence of a Peierls-like distortion? 

32 
The unit cell of a two-dimensional layer-model as a consequence is Re,Se,, with 76 

valence electrons filling 38 orbitals on average over the BZ. Our starting point will be 
the undistorted band structure, which will be first 'backfolded', i.e. derived from the 
ReSe, band structure. The new unit cell (Re,Se,) is four times larger than that of the 
undistorted one, thus the new BZ is one-quarter of the original one, as illustrated in 33. 

r r ' :  3 x M  

-1 X K  
3 x K '  

33 
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The primed high symmetry points refer to the new, small zone, while those of the old, 
four times larger, are unprimed. Regions 1-4 are inequivalent in the old zone, but are 
mapped to region 1 in the new zone. 

A number of new degeneracies occur at the new special points. These become 
important because after distortion takes place some of the levels split strongly, in fact 
driving the distortion electronically. The new bands can be pieced together, from the 
previous band structure of the undistorted system, using the mappings indicated in 33. 
One such piecing-together process is illustrated in figure 18. 

In Re,Se, 12 electrons have to be put into these bands (d3) .  Of particular 
importance around the Fermi level are the triply degenerate bands (originating from 
M )  and the doubly degenerate ones (originating from r), in the r' point bands 37-41. 
Likewise, important around the Fermi level are the doubly degenerate bands 37 and 38 
originating from K ,  and the triply degenerate levels (39,40 and 41) originating from K', 
in the K' point. These levels are derived from bands 9-11 of figure 14(a), and have 
predominant d,, -,2 and d,, (in-plane) character and thus will be strongly affected by an 
in-plane distortion in which metal-metal overlaps are turned on. To put it another way, 
these in-plane bands will drive the distortion, if possible trying to open up a substantial 
band gap at the Fermi level. 

r K' 

M K' 

-14 -'H 
M K 

&::::- 

.. .... . .-. 
r- 

...... H-- 3 3 7 . 3 8  u 
r K' 

Figure 18. d Bands along r to K '  line in the reduced (backfolded) BZ, 33, for undistorted 
Re,Se,. (-) originates from M to K ,  (. . .)from r to K' and (---) from M to K'  (twice). 
The band structure is derived from that of ReSe, (undistorted) (after Kertesz and 
Hoffmann 1984 a). 
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Energy bands in solids 153 

Let us examine the detailed splitting of these bands as the distortion develops. In the 
r point band 39 is expected to be perturbed upwards, 40 downwards and 38 to remain 
at  an intermediate energy. This is indicated schematically in 34. If the downward 
perturbation is strong enough to shift 40 below 38, a distortion will be energetically 
favourable. Likewise, for the K' point we expect a situation such as 35. If the two levels 
(38, 39) are perturbed strongly enough, a distortion is preferred for that k point. The 
actual situation, as represented by our band calculations is shown in figure 19. Here we 
have chosen a distortion parameter, E, which interpolates linearly between the 
undistorted octahedral ReSe, structure and the experimentally observed one. 

34 35 

Figure 19 is a Walsh diagram for two points, the most important ones, in the BZ. 
Similar things happen at both. Due to the lowered symmetry several avoided crossings 
occur. The most important higher two orbitals (37 and 38) are pushed down by the 
presence of orbital 40, which is moved to lower energy by the geometrical perturbation 
at the r point, and 39 at the K point. As a result, early on (say at around ~ = 2 5 %  

r' 

E(eV) I 

, 
0 100% 

K' 

100% 
E 

Figure 19. Walsh diagram for the distortion of ReSe, for two points in the BZ as metal-metal 
bonding develops. The distortion coordinate, E, connects the ideal undistorted ( E  = 0) and 
the distorted experimental (E = 100%) structures linearly (Kertesz and Hoffmann 1984 a). 
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distortion) the highest occupied levels move sharply to lower energy, driving the lattice 
to distort. How strong is this electronic distortion force? It is actually felt throughout 
the whole BZ, although to a varying degree. According to our calculations, the energy 
gain per Re,Se, units ( E  = 100%) is - 2-54 eV at r', -455 eV at K' and - 3.45 eV on the 
average over the whole BZ. 

We can also look at the calculated total energy difference between the experiment- 
ally observed (ReSe,) and the undistorted structure as a function ofelectron count. This 
is done in table 2. 

Table 2. A E = E ( c = O ) -  E(E= 100%) for Re,Se,, in electron volts, as a function of d electron 
count. 

d" d o  d '  d 2  d 3  d 4  d 5  

AE -0.97 0.26 1.15 3.45 1.10 -8.84 

The particularly large energy gain at the d (Re) electron count coincides with the 
fact that the particular distortion observed in ReSe, is energetically favourable. 

One consequence of this distortion is the opening of an energy gap in the band 
structure. The magnitude of the calculated indirect gap (0.89 eV) lies close to the 
experimental (optical) gap (Wildervanck and Jellinek 1971) of 1.15 eV for ReSe, and 
1.33eV for ReS,, respectively. The calculated direct gap at r is 1.16eV. 

The above discussion of the distortion of ReSe, allowed us to trace back the driving 
force for the distortion to a Jahn-Teller-type splitting of orbitals. The splitting at small 
distortion values does not occur at the Fermi level, although close to it, but the level 
splitting is large enough to move the Fermi level, whose exact position is not essential 
for the actual distortion to occur. 

This is in contrast to other, quite familiar, distortions widely occurring in quasi- 
one- and two-dimensional systems, as e.g. polyacetylene, or several d transition-metal 
dichalcogenides, which are known under the names of Peierls distortion and periodic 
lattice distortions coupled to charge-density waves (Friend and Jerome 1979). For 
these instabilities, the periodicity of the distortion is related to particular dimensions 
and forms of the Fermi surface, which is often not commensurate with the periodicity of 
the lattice. These instabilities are most easily visualized in the language of energy band 
theory; the existence of large parallel 'nesting' regions of the Fermi surface separated by 
a single wave-vector 2kF leads to a strong scattering of the electrons with momentum 
k kF, splitting their energy strongly. Thus, an energy gap opens up and the system is 
stabilized. The periodicity of the potential, and thus that of the periodic lattice 
distortion, is tied in this picture to the particular k,. Without going further into this 
complex subject, it is already clear that the case of ReSe, is different, in that neither the 
shape of the Fermi surface nor its energy is determining the particular 'clustering' 
distortion of this semiconductor. 

What then determines this deformation? Since three electrons occupy the three-d- 
type bands, the distortion is such as to open a gap in the middle of it. Thus, the ratio of 
the number of bonding and antibonding regions should be roughly 1 : 1. For this to 
occur, doubling of the unit cell may be sufficient. However, for a system with the unit 
cell of Re,Se, the number of short and long contacts cannot be 1 : 1 (in a lattice derived 
from a hexagonal one), in contrast to a one-dimensional system where this is easily 
fulfilled (see, e.g. the case of polyacetylene). On the other hand, for four units, this 
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Energy bands in solids 155 

condition may be fulfilled with the formation of the diamond-shaped clusters of the 
experimental ReSe, structure. 

In any molecular or extended system the overlap populations signal the way for a 
molecular distortion. By way of example let us step back from the crystal case to a 
molecular one, the simple Jahn-Teller system of cyclobutadiene (36). When r I2  = r 2 3  the 

4nn3 1 2 

36 

ground state is degenerate in Huckel theory. The overlap populations p i 2  and p 2 3  are 
undetermined, they depend on the arbitrary choice of the occupied subspace within the 
two degenerate molecular orbitals (MOs). However, the slightest distortion towards a 
geometry with r I 2  - r 2 3  # O  leads to z overlap population p; ,  < 0 and p;3  >O, which do 
not depend strongly on r I 2 - r z 3 ,  as illustrated by an MO calculation for C,H, on 
figure 20. In a similar way, it is informative to look at the overlap populations for the 
different metal-metal bonds in ReSe, at the very beginning of the distortion. For 
technical reasons (numerical stability), we have chosen a 1% deformation. Table 3 
summarizes some of these overlap populations, at different electron counts. 

The d count is particularly suitable for the formation of the chains as indicated in 
32: all bonds which will become shorter have larger overlap populations, those which 
will become larger are close to zero at d '. The difference does not change dramatically 
even at 3% deformation, in analogy to the cyclobutadine case. Thus, the wavefunction 
at very small deformation is already pointing into the direction of the actual 
deformation. The bond orders at the fully developed deformation are indicative of 
slight metal-metal bonding in the chains. We may conclude this section by answering 
the question posed in the subtitle; the distortion of ReSe, shows all the significant 
features of the molecular Jahn-Teller distortion. 

T overlap population, p" 
t 

0.21 

Figure 20. n-Overlap populations for cyclobutadiene as a function of r L 2  - r 2 3  
(r,,+r,,fconst). The empty circles at r 1 2 - r 1 3 = 0  indicate that the values are 
undetermined in Huckel theory. 
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Table 3. p i j  overlap populations ( x 1000) averaged over the whole BZ, as a function of electron 
count, and deformation for Re4Se,. Numbering according to 32. 

E =  1% €=3% €=loo% 
d o  d '  d 2  d 3  d 4  d 3  d 3  

Intrachain 
2,3 27 40 31 13 - 18 21 193 
1,3 26 37 36 10 - 18 13 143 
1,2 26' 37 36 10 - 18 12 140 
1,4' 26 36 36 10 ~~ 19 11 89 

Interchain 
4,l" 26 33 33 -0.4 -22 -1 - 32 
2,l" 26 34 34 2 - 20 2 - 37 

6. The graphite to diamond transformation 
In the last descriptive section we shall discuss an orbital model for a solid-state 

transformation, in particular the reaction starting from graphite and leading to 
diamond (Kertesz and Hoffmann 1984 b). Aside from its intrinsic interest, it will turn 
out that this transformation bears resemblance to certain possibly concerted chemical 
reactions which have symmetry-related constraints (Woodward and Hoffmann 1970). 
Burdett and Price (1982) have elegantly applied the ideas of orbital correlation 
diagrams to solid-state polymorphic transformations, and our analysis extends their 
work. 

The basic geometries of the two allotropes, rhombohedra1 graphite and diamond, 
are well known. Three coordinates define the structures and the reaction coordinate: r,  
the CC distance within the layer (rG = 1.40 b;, rD = 1.54 b;); R, the CC distance between 
layers (R ,  = 3.35 A, R,= 1.54 A), the angle i3 between the perpendicular to the layers 
direction ( z  axis) and a CC bond within a layer (0, =90", 0,= 109.47"). 

All the coordinates change continuously during a hypothetical concerted trans- 
formation, but it is R which is most changed, and causes the large reduction in volume. 
Then choosing R as an independent variable, we have optimized the other two 
parameters, rand 8, along the reaction path, using extended Hiickel band calculations. 
Rhombohedra1 symmetry was maintained along the reaction path. 

The computed energy profile is indicated in figure 21. The extended Hiickel method 
is not reliable for absolute energies, especially when bond distance changes are 
involved. In the case at hand the instability of diamond relative to graphite is much 
exaggerated. Nevertheless, we have substantial experience with extracting reliable 
orbital and symmetry arguments from the method, and it is in this sense that we will 
eventually use the computation. 

Let us examine some features of the computed reaction path. The dashed line in 
figure 21 corresponds to the total energy with the graphite structure with i3=90° and 
r = rg fixed. For R close to R, the two curves run close, thus the energy gain due to the 
relaxation of i3 and r is not significant. 

Nearing the transition state (TS), the other two coordinates become very much 
involved. The calculations give a transition state for this reaction in which the 
pyramidalization is almost complete, the in-plane bonds have almost reached their 
diamond values, only the interplane bonds are very long and different from those in 
diamond. The graphite 71 delocalization is completely lost. 

. 
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t Etot’Cz 

Figure 21. Total energy per two carbon atoms during the graphite to diamond transformation: 
(-) fully optimized, (- - -) rigid planes of graphite in a parallel approach, (- . - .) energy 
profile of the diamond structure. TS indicates the transition state (Kertesz and Hoffmann 
1984 b). 

The total energy is an average over the symmetric unit cell of the reciprocal space, 
the BZ. However, as in the case of molecules, the nodal structure of the wavefunction is 
preserved to a great extent, even in quasi-symmetrical cases. Thus, even off the high 
symmetry points or lines and planes of the BZ, but in their vicinity, the consequences of 
the symmetry are felt strongly. Therefore, these high symmetry points carry measurable 
weights in the averages over the BZ. 

For the r point of diamond there is full s-p separation, due to the tetragonal 
symmetry. One of the triply degenerate sets (2p,) has the orbital diagram depicted in 37, 
together with the TC and n* orbitals in graphite. Also included are the related orbitals at 
7: The symmetry correlation in 37 is such that along the reaction coordinate the levels 
cross somewhere. 

U Graphite Diamond 

37 
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While there are many similarities between level correlations and curve crossing in 
discrete molecules and similar phenomena is extended structures, there are important 
differences to note. First, the two crossing levels on the correlation diagram 37 do not 
correspond to the highest occupied (HO), or lowest unoccupied (LU) levels. Those HO 
or LU levels are dependent on the band structure as a whole, and they are not even 
necessarily at the zone edges or high symmetry points. This leads to the second 
important difference: the transition state, as well as a range of states on both sides of the 
transition state, TS, corresponds to partly filled, thus metallic band, structures. This is 
illustrated in figure 22 through the changes of the densities of states as the reaction 
proceeds. If we were to draw Walsh-type diagrams for many k points in the BZ, we 
could see how the changes of the densities of states come about. But we do not think this 
is necessary here. Due to the very strong perturbations of the p states on 37 the r point 
ofthe band structure is moved so strongly, that the filling has to become partial, leading 
to a metallic band structure along the transition. 

-15 

(eV) 

-20 

-25 

-30 

DO5 DO5 DO5 DO5 

a b C d 

Figure 22. Valence electron (DOS) along the graphite to  diamond transformation. (a)  graphite; 
(b) compressed graphite, unbuckled planes at  2.67 8, distance; (c) the computed transition 
state, TS; (d) diamond. The dashed projections are for 2p ,  orbitals. Note the large DOS at  
the Fermi energy, E,, in cases (b)  and (c) (Kertesz and Hoffmann 1984 b). 

This discussion accounts for the reversible decrease of resistivity, followed by an 
irreversible increase in the same observable as the pressure is raised in graphite 
(Drickamer et a/. 1966). 

The above model explains the high stability of the metastable diamond phase: after 
high pressure has put the system over the (symmetry-related) barrier, it would require 
negative hydrostatic pressure to reverse the transition. 

The fact that the TS structure is unstable, and that it is metallic, could possibly 
imply that its distortion to the insulating diamond, or to the semimetallic graphite is in 
some way related to a Peierls-like effect. This is not so, because the degeneracy in the 
Peierls case is related to symmetry, whereas’ here it is an accidental degeneracy 
originating from a level crossing. 

The actual mechanism of the high-pressure transformation of graphite to diamond 
is certainly much more complex than the model we have studied. First, rhombohedra1 
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graphite is rare, and is always found together with hexagonal graphite (Donohue 1974). 
Hexagonal graphite, however, cannot yield a diamond structure, unless the approach 
of the graphite planes is coupled to some in-plane slip of some of these planes. For 
instance, slipping leading to AA packing will lead to a hexagonal diamond. A more 
complicated slip pattern to ABC packing (effectively rhombohedral) can then lead to 
cubic diamond. A further complication is that catalysts and heat treatment change the 
kinetics of the transformation appreciably (Bundy et al. 1973). If shear is applied in 
addition to high pressure, the minimal temperature and pressure required for the 
transformation is lowered (Zhorin et al. 1982). This fits well into the present picture. 
The interconversion of graphite and diamond may also involve nucleation and growth. 
These could be .thought of as solid-state analogues of non-concerted or step-wise 
processes, which we know intervene in the molecular case when orbital symmetry 
barriers are imposed. 

7. Remarks on the one-electron theories 
The general question, why the simple sum of one-electron energies may be of any 

use in estimating total energies has, of course, intrigued theoretical chemists (see, for 
example, Phillips and Van Vechten 1970, Skriver 1982, McWeeney 1979, Glimarc 1979, 
Mechrotra and Hoffmann 1978). 

Perhaps the most direct justification is based on an observation of Politzer (1976) 
according to which 

Etot =4(Vne + 2VnJ + A (28) 
where V,, is the nuclear4ectron attraction, V,, is the nuclear-nuclear repulsion and A 
is a small correction. Then, using the virial theorem, one can obtain the following 
relationship 

Etot K C EAk) (29) 
where K is a constant. This gives a theoretical basis for putting AE=O in the 
fundamental equation (15) (Ruedenberg 1977, Kertesz et al. 1978). 

7.1. The Hamiltonian 
The remarkable ability of one-electron effective Hamiltonians (Heff) to describe 

energy bands and bonding in a wide variety of solids is well documented (Harrison 
1980, Bullett 1980, Kelly 1980, Burdett 1984). In these schemes Herr does not depend on 
the wavefunction tjnk(r), which is usually expressed as a linear combination of atomic 
orbitals (1). 

Approximations for Heff within an A 0  basis, Xi(r), are used for various purposes. 
The following are the most well-known models, all of which we consider as variants of 
the extended Huckel theory (EHT). 

The Wolfsberg-Helmholz (1952) form is defined by 

HLi= - I i  ( I i :  ionization potential) . (30 4 
H i j =  -0.5KSij(Ii+Ij), S i j =  (Xi(r) /Xj(r))  (30 b)  

Further form are the Cusachs-Reynolds (1965), the Ballhausen-Gray (1962), the 
Pantelides-Harrison bond-orbital approximation (1 976), the weighted H i j  formula 
(Ammeter et al. 1978) and Bullett’s scheme (1980) based on Anderson’s chemical 
pseudopotential (CP) (Weeks et a!. 1973). The latter has been rather successful in 
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describing the equilibrium bond distances. (It is well known that the one-electron 
method gives, in some instances, too short covalent bond distances.) The CP scheme 
involves a non-Hermitian matrix Dij. 

where 4i arc atomic Hartree-Fock orbitals, and is the difference of the full crystal 
Hamiltonian H from the isolated atom Hamiltonian. Note that (i’lKlj) # ( i l y l j ) .  
The matrix elements are evaluated by numerical integration, 

Dij= Irml <IrnId~i(rrn){ Urm)- Vrn)}4j(rn)d 3r (32) s 
where rm and rn arc the position vectors r from each nucleus as coordinated system 
origins. 

It can be shown that this formalism becomes equivalent to the Wolfsberg- 
Helmholz one under the conditions that 

Dij+Dji=(K- l)Sij(Hii+ Hjj) (33) 
Some further ‘non-empirical’ non-self-consistent schemes are being used by various 

research groups. For example, Bredas et al. (1982) have applied the Nicolas-Durand 
(1 979) effective Hamiltonian techniques and arrived at reasonably good energy bands 
for conjugated polymers. Although based on sample ab initio calculations, this method 
is in fact very closely related to the above extended Hiickel methods, as can be judged 
from both the final form of the theory and the numerical results it yields (e.g. the 
obtained gaps are somewhat too small). Unfortunately it is not clear whether this 
technique provides a reasonable core repulsion. 

Woolley (1981) has studied the connections of C P  and EHT, but his formal analysis 
does not give a clue as to why the CP formulation is more successful in predicting bond 
distances than EHT is. Probably it is not the formalism itself, as the Hamiltonian 
matrix of EHT is directly expressible in terms of the D matrix elements of the CP theory 

H=SD (34) 
However, the way the integrals arc calculated is different, and approximation (33) 
becomes less valid for short interatomic distances. This fact was realized earlier and 
other suggestions to overcome the high density difficulty involve, for instance, use of 
additional semiempirical atom-atom repulsion terms (Anderson and Hoffmann 1974). 

Let us now turn to some of the merits and disadvantages of the one-electron 
theories. 

7.2. Advantages and disadvantages of one-electron theories for solids 
Perhaps the main formal advantage of the non-self-consistent theories is the 

applicability of a simple perturbation theory (PT) (Hoffmann 1971) which becomes 
invalid using more sophisticated Hamiltonians as, for instance, self-consistent field 
ones. The simplest form of this PT makes predictions about substitutional preferences 
which arc quite important issues in chemistry. Examples of the type of logic involved 
can be found in standard textbooks on the Huckel theory (see, for example, 
Heilbronner and Bock 1976). The main point is that the change of the atomic Coulomb 
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integrals 6ai induces a change in the total energy. Up to first order (suppose the 
resonance integrals are unchanged): 

where qi are the atomic n-charge densities calculated for an unperturbed homoatomic 
system. Then predictions can be made for substitional preferences because the largest 
stabilization occurs for a substitution of more (less) electronegative atoms with larger 
(smaller) q i  values. Of course, these predictions could be made by performing a full 
calculation (at the one-electron, or a more sophisticated, level) but the advantage we 
gain by doing PT is that we can make a theoretical connection between chemically 
related systems. By performing numerical calculations and subsequently picking the 
most stable one is also a prediction, but of another type: it is more like a numerical 
experiment which does not give conceptual relationships between the molecules or 
solids studied. There are not too many solid-state substitutional preference studies 
published yet, although a large number of solid-state structural problems are of this 
kind. Regarding a few remarkably successful predictions, we refer to a review of Burdett 
(1984). 

The rigid band, or average band, model, discussed above in some detail, is useful for 
comparing the energetics of related solids with different electron counts. This is another 
area where the applicability of PT is crucial. The average band structure can be viewed 
as one corresponding to some hypothetical ‘average’ chemical elements, and the actual 
compounds are represented by parameters deviating not too much from these average 
ones. As long as deviations are small, these changes can be followed by PT again, with 
the benefit of making direct comparison and observations of trends regarding related 
but distinct compounds. The rigid band model is also applicable in situations where 
electron counts are changed due to varying charge transfer. Here neglect of self- 
consistency effects in the Hamiltonian makes it possible to use the wavefunction for one 
amount of charge transfer to predict the properties of the system for another amount of 
charge transfer. 

The study of Peierls-type distortions is a further area where it may be beneficial to 
use simplified Hamiltonians. The knowledge of the nodal structure of the wavefunction 
at and around the Fermi level often contains information as to how the structure may 
be susceptible to lattice distortions and how these tendencies are related to specific 
electron counts (see, for example, Kafafi and Lowe 1984). Although self-consistent field 
(SCF) calculations showing instabilities towards different kinds of charge density 
waves, such as diagonal and off-diagonal charge density waves or spin density waves 
(Kertesz 1982, Whangbo 1983), may be used beneficially to study tendencies towards 
distortions in a given system, again studies based on simple non-SCF Hamiltonians 
have the advantage of allowing the investigator to make connections among related 
but distinct systems. 

Recognition of natural building blocks orfragments is facilitated by the use of non- 
SCF Hamiltonians (see, for example, Hoffmann 1982 and references therein). A 
fragment molecular orbital (FMO) analysis for solids is also possible. This is a way to 
recognize the localized building blocks from which a solid is made up. Fragmentation, 
as any localized picture in quantum chemistry, is not unique. In some cases the 
interactions suggest a natural fragmentation: for instance, in solid hydrogen fluoride 
the localized orbitals are largely concentrated on the H F  molecules (Kertesz et al. 1979). 
In other cases attempts to recognize localized bond orbitals from full band calculations 
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have been successful (Surjan et al. 1983). However, non-SCF Hamiltonians have the 
formal benefit that virtually any fragmentation is possible and thus fragmentation can 
be tailored according to the chemical building blocks and molecular analogies. An 
enlightening example for this kind can be found in a recent study of the Chevrel phases 
by Hughbanks and Hoffmann (1983). In this work a connection is made between the 
electronic structure of infinite ( M O , X ~ ) ~  chains (X=S, Se, Te) and M o ~ ~ X ~ ~ + ~  
clusters. In establishing these types of connections, which ought to be obvious from a 
chemical point of view, use is made of the molecular orbitals of common fragments 
(Mo, units in this case) to enable us to identify the common features of the Mo-X and 
Mo-Mo bonding in these systems. 

As to the limitations of the non-SCF theories, their main drawback is that they are 
inferior in some of their quantitative predictive capabilities to ab initio or SCF 
semiempirical theories. There are several areas where ab initio theories are rather poor; 
the prediction of too large gaps by the exact exchange theories and the typical 
underestimation of it by local density theories is well known (Kertesz 1982, Sham and 
Schluter 1983, Perdew and Levy 1983). Well-described unoccupied orbitals are essential 
in some of the above-mentioned favourable features of the non-SCF theories. This is 
related to the fact that the energy gaps of these calculations tend to be so reasonable. 
The present author believes that more work is needed to clarify this point theoretically. 
Nevertheless, the recent successes of the density functional theories in predicting stable 
geometries and energy differences between closely related phases are remarkable (see, 
for example, Yin and Cohen 1982, Chelikowsky and Louie 1984). Even the dependency 
of the gap on high pressure seems to come out right (Chang et al. 1984). Although the 
simple theory can be used to map out the general features of the bands and energetics, 
more elaborate calculations are needed to account for details accurately. Especially 
problematic is the energetic comparison of related structures with different coordin- 
ation numbers, such as that of a-Si (4 coordinated) and p-Si (6 coordinated) (see e.g. 
Biswas and Kertesz 1984). The successful applications of topological considerations 
comparing stabilities of different structures (Burdett 1984) are also probably limited by 
the same drawback of the simple theory (T. Hughbanks 1984, personal 
communication). 

Simple (non-SCF) one-electron theories are usually at their weakest in applications 
to very polar systems. Nevertheless, as far as stability differences of related structures 
are concerned, “ckel type calculations may be useful guides, as demonstrated recently 
by the study of h;,O and T i 0  by Burdett and Hughbanks (1984). This is again an area 
of application, where results are better than they ‘ought to be’, due to compensation of 
errors. We are convinced that tl;- two approaches, the simple non-SCF kind and %he 
sophisticated ab initio type, are supplementing each other very well and are 
contributing to our fundamental understanding of the electronic levels and orbitals in 
solids. 

In this review we have attempted to present in an elementary way how much energy 
band calculations can do for solid-state chemical problems. We have sampled from a 
very large literature to pinpoint a few typical problems: distortion of regular metallic 
structures into insulating ones with lower symmetry, effects of charge transfer and 
comparison of stabilities of related solid-state structures. 
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